
An ICP variant using a point-to-line metric

Andrea Censi

Abstract— This paper describes PLICP, an ICP (Iterative
Closest/Corresponding Point) variant that uses a point-to-line
metric, and an exact closed-form for minimizing such metric.
The resulting algorithm has some interesting properties: it
converges quadratically, and in a finite number of steps. The
method is validated against vanilla ICP, IDC (Iterative Dual
Correspondences), and MBICP (Metric-Based ICP) by repro-
ducing the experiments performed in Minguez et al. (2006). The
experiments suggest that PLICP is more precise, and requires
less iterations. However, it is less robust to very large initial
displacement errors. The last part of the paper is devoted to
purely algorithmic optimization of the correspondence search;
this allows for a significant speed-up of the computation. The
source code is available for download.

Index Terms— Scan matching, localization, ICP, IDC,
MbICP, metric, point-to-line

I. INTRODUCTION

ICP solves a surface matching problem which can be
expressed as follows: given a reference surface S ref and a
set of points {pi}, find the roto-translation q = (t, θ) that
minimizes the distance of the points pi, roto-translated by q,
to their projection on surface S ref. That is, in formulae:

min
q

∑
i

∥∥pi⊕q−Π
{
S ref,pi⊕q

}∥∥2
(1)

Here the symbol ‘⊕’ denotes the roto-translation operator
(p⊕(t, θ) , R(θ)p+t), and Π

{
S ref, ·

}
denotes the Euclidean

projector on S ref. A closed form for the solution is not found
in general, due to the arbitrary nature of S ref and the non-
linearity of ⊕.

ICP minimizes (1) iteratively, starting from a first
guess q0. The point projections over S ref are computed
according to the old guess qk, and a solution is found for
the new guess qk+1. In formulae, at each step k, ICP solves
this problem, for which a closed form is available:

min
qk+1

∑
i

∥∥pi⊕qk+1−Π
{
S ref,pi⊕qk

}∥∥2
(2)

After its introduction, many ICP variants have been
investigated, because the core algorithm can be slightly
modified in many ways: which subset of points to use, how
to define the error metric, how to discard outliers, etc —
see [1] for a short survey of the popular variants used in the
vision community. Specialization of the ICP in the robotics
community have flourished [2], [3], [4], [5], [6]; the research
focused on solving some of the problems that become evident
when using ICP for scan-matching: it converges to the

A. Censi is with the Control & Dynamical Systems department, California
Institute of Technology, 1200 E. California Blvd., 91125, Pasadena, CA.
andrea@cds.caltech.edu

p
ji

1

p
w
i

p
ji

2 p
w
i

(c) Point-to-line metric

S
ref

(b) Point-to-point metric(a) Distance to curve
and to polyline

Π{S ref
, p

w

i
}

Fig. 1. Near convergence, the point-to-line metric approximates the distance
to the surface better than the point-to-point metric used in vanilla ICP.

wrong solution for large initial errors; correspondence search
is expensive; convergence is slow; occlusions and outliers
are frequent; as-is, it does not fit well in a probabilistic
framework.

The main contribution of this paper is the use of a point-
to-line metric instead of the point-to-point metric used by
vanilla ICP. Call ni the normal to the surface at the projected
point. Then, the point-to-line metric is written as:

min
qk+1

∑
i

(
nT

i

[
pi⊕qk+1−Π

{
S ref,pi⊕qk

}])2
(3)

The idea of using a point-to-line metric is not new at all:
it was proposed in [7] — which, together with [8], is
credited to be the originators of ICP— however, the non-
linear equation (3) was linearized and solved using linear
least-squares. This paper introduces (in Appendix I) an exact
closed-form solution to (3) in the planar case.

Using the point-to-line metric, and an exact solution,
drastically improves the convergence properties of the al-
gorithm: PLICP has quadratic convergence instead of the
linear convergence of vanilla ICP. Moreover, if the reference
surface is a polyline, as it is usually assumed in robotics
scan-matching, PLICP provably converges in a finite number
of steps. An intuitive explanation is that the point-to-line
metric (Fig. 1c) more closely approximates the real surface
distance (Fig. 1a) than the point-to-point metric (Fig. 1b).

As an experimental validation, this paper reproduces the
experiments performed in [6], so that a direct comparison
with ICP, IDC, and MBICP will be possible.

The second contribution of this paper is purely algo-
rithmic: Appendix II presents an optimized algorithm for
computing correspondences. On the test data, the use of the
point-to-line metric and the algorithmic optimizations allow
PLICP to run at more than 500 matchings per second on a
Pentium IV 1.8GhZ for typical data (360-ray scans).

Manvi Bengani

II. THE PLICP ALGORITHM

The input data are: a reference scan yt−1, a second scan
yt, and q0, a first guess for the roto-translation to be found.
The reference surface S ref is created from the first scan yt−1:
S ref is a polyline obtained by connecting sufficiently close
points (using a threshold).

In the following, the index i refers to the points in the
scan yt, while the index j refers to the points in yt−1. The
index k refers to the iterations of the algorithm.

Repeat for k ≥ 0 until convergence or loop detected:

1 – Compute the coordinates of the second scan’s points
in the first scan’s frame of reference, according to the current
guess qk = (tk, θk). Point pi is transformed into pw

i as
follows:

pw
i , pi ⊕ qk = R(θk) pi + tk (4)

2 – For each point pw
i , find the two closest points in the

first scan; call their indexes ji
1 e ji

2. Call Ck all the point-
to-segment correspondences at step k. Ck can be written as
a set of tuples

〈
i, ji

1, j
i
2

〉
, meaning: point i is matched to

segment ji
1–ji

2.

3 – Use a trimming procedure [9] to eliminate outliers.

4 – Rewrite the error function (3) as:

J(qk+1,Ck) =
∑

i

(
nT

i

[
R(θk+1)pi+tk+1 − pji

1

])2

(5)

This is the sum of the squares of the distances from point i
to the line containing the segment ji

1–ji
2.

5 – To obtain qk+1, minimize the error function (5) using
the algorithm in Appendix I.

III. PLICP HAS QUADRATIC CONVERGENCE

The experiments discussed in Section V show that PLICP
needs much less iterations than ICP or MBICP: the theo-
retical justification is that using a point-to-line metric gives
quadratic convergence instead of linear convergence.

The following results have been proved in
Pottman et al. [10]:

Proposition 1: (Pottman et al) Properties of the ICP
algorithm with point-to-point metric:
• The error metric is always decreasing; therefore, a local

minimum is always reached.
• The ICP algorithm, in general, exhibits linear conver-

gence:
‖qk − q∞‖ < c

∥∥qk−1 − q∞
∥∥ (6)

for some constant c ∈ (0, 1). The constant c depends
on the direction from which the local minimum is
reached. The constant can be computed (if one knows
the solution), but can also be estimated from the data.

Proposition 2: (Pottman et al) Properties of the ICP
algorithm with point-to-line metric:
• Minimizing the point-to-line metric is equivalent to a

Gauss-Newton iteration.

TABLE I
SYMBOLS USED IN THIS PAPER

in the source code meaning
yt−1 laser_ref first scan
yt laser_sens second scan
q x pose (to estimate) = (t, θ)
q0 params–>first_guess first guess for the pose
⊕ oplus_d() roto-translation:

p⊕ (t, θ) , R(θ)p + t
i i index over yt’s points
j j index over yt−1’s points
pi laser_sens–>points[i].p i-th point of yt (cartesian)
pw

i laser_sens–>points_w[i].p i-th point of yt, in yt−1’s frame
pj laser_ref–>points[j].p j-th point of yt−1 (cartesian)
ϕj laser_ref–>theta[j] direction of j-th ray
ρj laser_ref–>readings[j] reading for j-th ray
C laser_sens–>corr point-to-segment correspondences
ji
1 laser_sens–>corr[i].j1 best match for pw

i
ji
2 laser_sens–>corr[i].j2 second best match

ni normal to the segment (ji
1 – ji

2)
M(q) find_correspondences() computes Ck

S(C) compute_next_estimate() computes qk+1

• The algorithm converges quadratically in the case of a
zero-residual problem, and a good first guess:

‖qk − q∞‖
2

< c
∥∥qk−1 − q∞

∥∥2
(7)

Some caveats are necessary. These theoretical results are
obtained by considering idealized versions of the algorithms,
which do not contain the necessary smart little tweaks
(‘hacks’) that make them work in practice. In reality, for
example, the error function might not always be decreasing
if some correspondences are discarded as outliers; moreover,
the proof of Proposition 1 assumes that the reference surface
has bounded derivatives, which is not true in the case of the
polyline. Nevertheless, these results show, at least, that the
point-to-line metric is superior in the best case (zero-residual,
good first guess) to the point-to-point metric.

IV. PLICP CONVERGES IN A FINITE NUMBER OF STEPS

PLICP converges in a finite number of steps, if the
reference surface is a polyline. To prove this, it is convenient
to take a somewhat different view on the iteration process.

One can model the scan-matching process as the iterative
application of two maps:

1) a “match” function M, that maps a pose qk to a set of
point-to-segment correspondences Ck:

qk
M→ Ck (8)

2) a “solve” function S, that minimizes the error metric
created from the correspondences:

Ck
S→ qk+1 (9)

The property allowing such a decomposition is that the
error function J in (5) depends on the current estimate qk

only through the correspondences set Ck: all that matters
for defining the point-to-line error function is the segment
to which each point pi is matched (Fig. 1c). For vanilla
ICP, instead, the point-to-point metric depends explicitly on
Π
{
S ref,pi⊕qk

}
, the closest point to pi on S ref (Fig. 1b).

With this notation, the algorithm is the consecutive appli-
cation of “match” and “solve”:

q0
M→ C0

S→ q1
M→ C1

S→ q2 → . . . (10)

The common way to think of this process is as an iteration
between poses, by grouping together M and S in a composed
operation S◦M (first M, then S):

q0
S◦M→ q1

S◦M→ q2 → . . . (11)

However, in this occasion, it is more convenient to group
these maps in the other way: first S, then M; in this way,
the computation appears as an iteration between correspon-
dences, through the application of M◦S:

q0
M→ C0

M◦S→ C1
M◦S→ C2 → . . . (12)

The two descriptions of the matching process are equiv-
alent, but the second one has an advantage: the number of
possible point-to-segment correspondences Ck might be very
large, but finite nonetheless, while the poses qk live in a
continuous space. From an application of a trivial result of
dynamical systems theory, it follows that the iterations will
eventually stabilize on a finite orbit.

Proposition 3: The PLICP algorithm converges in a finite
number of steps to either a fixed point or a loop.

More formally, consider the iterations written as

Ck+1 = [M◦S] (Ck) (13)

Then there exists a finite n, and a δ ≥ 1 (δ = 1 for a fixed
point, δ > 1 for a loop) such that

Cn = [M◦S]δ(Cn) (14)

This stable set of correspondences Cn corresponds to an
equally stable point qn+1 = S(Cn) such that

qn+1 = [S◦M]δ
(
qn+1

)
(15)

V. EXPERIMENTS

A comparative study of the IDC, ICP, and MBICP
has been presented in [6]. Thanks to the authors, it was
possible to obtain the data file used and therefore to perform
exactly the same experiments. In the following, the proposed
algorithms will be compared specifically to the MBICP,
as [6] shows that IDC and ICP have worse performance.

The vehicle is a robotic wheel-chair; the sensor is a Sick
range-sensor giving 360 rays over a 180◦ field of view. The
scans are taken at an interval of around 0.3m; considerable
odometry slip is present.

A. Experiment with artificial errors

The first experiment performed in [6] is used to quan-
titatively compare the methods’ accuracy and realignment
interval. The following is the simulation algorithm:

For each scan S:
1) Set Sref = S.
2) Sample a displacement δ from an error distribution.

3) Set Ssens = S roto-translated by δ.
4) Run the scan matching algorithm with input Sref,Ssens;

let q̂ be the final estimate.
5) Because the true q is (0, 0, 0◦), assume q̂ to be the

error.

Six experiments are presented with increasing
initial displacement error (uniform distribution;
from [±0.05m,±0.05m,±2◦] in Experiment 1 to
[±0.2m,±0.2m,±45◦] in Experiment 6). For every
experiment, the above procedure is repeated 100 times for
each of the 778 scans.

There are pros and cons to this experimental setting. This
experiment is ingenious because it allows for using a real-
world data-set without the need of a ground-truth. Artificial
data can be readily created with the aid of simulators (for
example, Stage [11]), however common experience teaches
us that the ray-traced bitmap-maps cannot recreate a realistic
scenario. One problem with this approach is that it is unre-
alistic that a scan be matched against itself, as the common
situation is that the scans overlap only partially.

Results of PLICP : The table in Fig. 3 shows the
results. Error samples are sorted into buckets according to the
maximum absolute value of their components, expressed in
meters and radians. The first three columns are taken straight
from [6] and show the results for MBICP, ICP, and IDC.

The fourth column shows the results for PLICP. It is very
precise: when the error is in the < 0.001 bucket, the error is
actually (0, 0, 0) to machine precision. In fact, because S ref =
Ssens, PLICP finds the unique global minimum. However,
PLICP is less robust to big rotational displacements, also less
robust than IDC and ICP. See, for example, Experiment 6
where for 25% of the times PLICP obtains a large error.
On the other hand, a 45◦ odometry error between successive
scans could be considered unusual for indoor robotics – as a
matter of fact, in this particular log, with scans taken every

q
∞

qℓ

point-to-segment correspondences
sets of poses having same

(a) PLICP behavior

correspondences
point-to-point
different

q
∞

correspondences
same point-to-segment

(b) ICP behavior

Fig. 2. This figure illustrates the difference in convergence behavior of
PLICP and ICP. Establishing point-to-segments correspondences induces a
partition of the state space in discrete regions Qi = { q | M(q) = Ci }.
The points in each Qi produce the same correspondences Ci: since the next
PLICP iteration depends only on the matching information, the successor is
unique for each region (bold arrows). PLICP can converge either to a stable
point (q∞) or be captured in a loop (from q` in the figure). Vanilla ICP has
a very different behavior. The next step in ICP depends on the particular
points matched inside the segments, so ICP allows different trajectories in
every Ci area. Moreover, because the computation is stopped when the
motion is smaller than a threshold, in general the “stable” solution q∞ is
never reached.

Method MBICP IDC ICP PL ICP GPM GPM ◦

PL ICP

Precision (m,rad) (%) (%) (%) (%) (%) (%)

Experiment 1
< 0.001 81.27 83.31 57.78 99.85 1.86 99.98

(0.05m, 0.05m, 2◦)

(0.001, 0.005) 18.72 16, 68 42.22 0.01 36.34 0
(0.005, 0.01) 0.00 0.00 0.00 0.01 38.42 0.01
(0.01, 0.05) 0.00 0.01 0.00 0.13 23.37 0.01

> 0.05 0.00 0.00 0.00 0.00 0.01 0

Experiment 2
< 0.001 80.97 83.12 56.62 99.71 1.3 99.98

(0.10m, 0.10m, 4◦)

(0.001, 0.005) 19.02 16.84 42.48 0.02 24.56 0.00
(0.005, 0.01) 0.00 0.00 0.00 0.03 29.12 0.01
(0.01, 0.05) 0.00 0.03 0.00 0.22 42.85 0.01

> 0.05 0.00 0.00 0.00 0.02 2.17 0.00

Experiment 3
< 0.001 80.84 82.95 56.62 99.51 0.91 99.95

(0.15m, 0.15m, 8.6◦)

(0.001, 0.005) 19.15 16.96 43.37 0.03 18.64 0.01
(0.005, 0.01) 0.00 0.00 0.00 0.05 24.58 0.02
(0.01, 0.05) 0.00 0.05 0.00 0.33 50.16 0.02

> 0.05 0.00 0.03 0.002 0.08 5.71 0

Experiment 4
< 0.001 81.28 81.96 56.30 98.43 0.61 99.79

(0.20m, 0.20m, 17.2◦)

(0.001, 0.005) 18.71 16.79 43.58 0.088 14.05 0.01
(0.005, 0.01) 0.00 0.00 0.00 0.13 21.79 0.02
(0.01, 0.05) 0.00 0.80 0.00 0.44 54.25 0.07

> 0.05 0.00 0.44 0.10 0.92 9.3 0.11

Experiment 5
< 0.001 80.92 79.54 54.00 84.48 0.61 99.79

(0.20m, 0.20m, 32◦)

(0.001, 0.005) 18.79 16.36 43.13 0.20 14.05 0.01
(0.005, 0.01) 0.0 0.04 0.00 0.28 21.79 0.02
(0.01, 0.05) 0.0 0.81 0.00 0.93 54.25 0.07

> 0.05 0.28 3.05 2.85 14.11 9.3 0.11

Experiment 6
< 0.001 80.38 74.94 52.18 73.46 0.61 99.79

(0.20m, 0.20m, 45◦)

(0.001, 0.005) 18.86 16.53 42.01 0.23 14.05 0.01
(0.005, 0.01) 0.00 0.37 0.00 0.35 21.79 0.02
(0.01, 0.05) 0.00 0.81 0.01 1.14 54.25 0.07

> 0.05 0.75 7.32 5.78 24.81 9.3 0.11

PL ICP is the most precise.

Some annoying
not-so-constrained scans.

GPM’s results are constant as
they are not influenced much
by the initial guess.

...therefore also the results of
PL ICP◦GPM are constant.

Good results thanks to the
realigment of GPM and the
precision of PL ICP.

Method MBICP IDC ICP PL ICP GPM GPM ◦

PL ICP

Precision (m,rad) (%) (%) (%) (%) (%) (%)

Experiment 1
< 0.001 81.27 83.31 57.78 99.85 1.86 99.98

(0.05m, 0.05m, 2◦)

(0.001, 0.005) 18.72 16, 68 42.22 0.01 36.34 0
(0.005, 0.01) 0.00 0.00 0.00 0.01 38.42 0.01
(0.01, 0.05) 0.00 0.01 0.00 0.13 23.37 0.01

> 0.05 0.00 0.00 0.00 0.00 0.01 0

Experiment 2
< 0.001 80.97 83.12 56.62 99.71 1.3 99.98

(0.10m, 0.10m, 4◦)

(0.001, 0.005) 19.02 16.84 42.48 0.02 24.56 0.00
(0.005, 0.01) 0.00 0.00 0.00 0.03 29.12 0.01
(0.01, 0.05) 0.00 0.03 0.00 0.22 42.85 0.01

> 0.05 0.00 0.00 0.00 0.02 2.17 0.00

Experiment 3
< 0.001 80.84 82.95 56.62 99.51 0.91 99.95

(0.15m, 0.15m, 8.6◦)

(0.001, 0.005) 19.15 16.96 43.37 0.03 18.64 0.01
(0.005, 0.01) 0.00 0.00 0.00 0.05 24.58 0.02
(0.01, 0.05) 0.00 0.05 0.00 0.33 50.16 0.02

> 0.05 0.00 0.03 0.002 0.08 5.71 0

Experiment 4
< 0.001 81.28 81.96 56.30 98.43 0.61 99.79

(0.20m, 0.20m, 17.2◦)

(0.001, 0.005) 18.71 16.79 43.58 0.088 14.05 0.01
(0.005, 0.01) 0.00 0.00 0.00 0.13 21.79 0.02
(0.01, 0.05) 0.00 0.80 0.00 0.44 54.25 0.07

> 0.05 0.00 0.44 0.10 0.92 9.3 0.11

Experiment 5
< 0.001 80.92 79.54 54.00 84.48 0.61 99.79

(0.20m, 0.20m, 32◦)

(0.001, 0.005) 18.79 16.36 43.13 0.20 14.05 0.01
(0.005, 0.01) 0.0 0.04 0.00 0.28 21.79 0.02
(0.01, 0.05) 0.0 0.81 0.00 0.93 54.25 0.07

> 0.05 0.28 3.05 2.85 14.11 9.3 0.11

Experiment 6
< 0.001 80.38 74.94 52.18 73.46 0.61 99.79

(0.20m, 0.20m, 45◦)

(0.001, 0.005) 18.86 16.53 42.01 0.23 14.05 0.01
(0.005, 0.01) 0.00 0.37 0.00 0.35 21.79 0.02
(0.01, 0.05) 0.00 0.81 0.01 1.14 54.25 0.07

> 0.05 0.75 7.32 5.78 24.81 9.3 0.11

Fig. 3. The results for MBICP, IDC, ICP, are taken from [6].

0.3m, the maximum odometry error was 25◦.
Using GPM as a first guess, then PLICP : To overcome

the realignment problems of PLICP, one possibility is to use
a global algorithm for a quick first coarse realignment, and
then use PLICP for the final convergence. Here, a stripped-
down version of GPM [12] was used (without weighting,
and only one iteration). This seems a winning match, because
GPM is not sensible to big displacements, and then PLICP
is able to converge very quickly to the solution. Consider
Experiment 6: the combination of the two algorithms attains
the best accuracy for 99.79% of the trials.

B. One anecdote

The second experiment performed in [6] involves the
visual inspection of the reconstructed scan-matched map for
the given sensor log. The map reconstructed by PLICP is
virtually indistinguishable from the one shown in [6]; it is
not shown here for reasons of space.

The following table shows the average number of iter-
ations and the average execution time on a Pentium IV
1.8GhZ. Results for MBICP, ICP, and IDC are copied
from [6].

avg. iterations avg. execution time
MBICP 31.2 0.076 s (13.1 Hz)

ICP 34.7 0.083 s (12.0 Hz)
IDC 30.4 0.240 s (4.1 Hz)

PLICP 7.2 0.0018 s (539 Hz)

The iterations needed by PLICP are much less than those
needed by MBICP, ICP and IDC. As for the absolute
timing, take it with a grain of salt, as it heavily depends
on the implementation of the methods.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented PLICP: a simple ICP variant which
uses a point-to-line metric. Thanks to a closed-form mini-
mization, PLICP outperforms MBICP, vanilla ICP, and IDC
for accuracy, number of iterations, and raw speed. Moreover,
two interesting properties can be proved: 1) PLICP converges
quadratically, and 2) PLICP converges in a finite number of
steps. To the author’s knowledge, PLICP is the only ICP
variant used in robotics localization for which such properties
have been shown. It is likely that future work will lead to
more stringent properties on the number of iterations needed,
and, hopefully, to an upper bound as a function of the initial
error.

PLICP needs less parameters than the vanilla ICP: it does
not need the thresholds εt, εθ for stopping the convergence,
nor it needs an estimate max |t| and max |θ| for efficiently
searching the correspondences. The only magic numbers
still needed are those governing the rejection/trimming of
correspondences.

The experiments show that PLICP is definitely the best
option to quickly converge from a good first guess. However,
it does not handle well severe odometry errors; in particular,

it is less robust than MBICP to large rotations: this is not
surprising, as MBICP has been explicitly designed to handle
such cases. One possible solution investigated is to use a
quick fast global algorithm like GPM for a first realignment,
and then finish the job with PLICP.

There are still many degrees of freedom that could be
explored. As explained in Appendix I, one can easily mix the
point-to-point and point-to-line metric, and different weights
can be attributed to the correspondences. Experimenting
with such possibilities is likely to improve the realignment
properties.

The data-set and C source-code for the full scan matcher
are available at http://purl.org/censi/2007/csm.
Source code for the closed-form minimization is available
also separately in the C, Ruby, and Matlab/Octave languages
at http://purl.org/censi/2007/gpc .

APPENDIX I
CLOSED-FORM SOLUTION

FOR THE 2-D GENERALIZED METRIC

Consider the following non-linear minimization problem:

min
t,θ

∑
i

‖(R(θ)pi + t)− πi‖2
Ci

(16)

where pi,πi, t ∈ R2; R(θ) is the 2 × 2 rotation matrix,
and the norm ‖a‖2

C is defined as aTCa. This is a general
form that encompasses both the point–to–point metric (Ci =
wiI2×2, wi being a weight), and point-to-line metric (Ci =
winin

T
i , where ni ∈ R2 is the versor normal to the line).

A. Reduction to quadratic form

A closed-form for the solution can be found. The
three-dimensional solution (tx, ty, θ) will be found in
the four-dimensional space x = [x1, x2, x3, x4] ,
[tx, ty, cos θ, sin θ] by imposing the constraint x2

3 +x2
4 = 1.

Given the vector pi = (pi0, pi1), define the following
matrix Mi:

Mi =
[

1 0 pi0 −pi1

0 1 pi1 pi0

]
(17)

Then (16) can be written in matrix form as

min
x

∑
i

(Mix− πi)
T Ci (Mix− πi) (18)

The following step simplifies the expression to obtain a
simple quadratic form. Expand (18) to obtain∑

i

(Mix− πi)
T Ci (Mix− πi) =∑

i

(xTMT
i CiMix + πT

i Ciπi − 2πT
i CiMix)

Ignoring the constant terms, the new function to minimize is

xT

(∑
i

MT
i CiMi

)
︸ ︷︷ ︸

M

x +

(∑
i

−2πT
i CiMi

)
︸ ︷︷ ︸

g

x (19)

By defining the matrix W =
[

02×2 02×2

02×2 I2×2

]
, the constraint

x2
3 + x2

4 = 1 can be written as xTWx = 1, and the problem
becomes:

min
x

xTMx + gTx (20)

subject to xTWx = 1 (21)

B. Solution using Lagrange’s multipliers

The solution will be derived using Lagrange’s multipliers.
Define the function L(x):

L(x) = xTMx + gTx + λ(xTWx− 1) (22)

Necessary condition for optimality is that (∂L/∂x = 0T):

2xTM + gT + 2λxTW = 0T (23)

This is equivalent to:

x = − (2M + 2λW)−T
g (24)

If one puts relation (24) into the constraint (21), one obtains
the following expression, in which the only unknown is λ:

gT (2M + 2λW)−1 W (2M + 2λW)−T
g = 1 (25)

Even if not obvious at first sight, (25) is a fourth-order
polynomial in λ. The following computations will prove this
assertion. Partition the matrix (2M + 2λW) into four sub-
matrices:

2M + 2λW =
[

A B
BT D + 2λI

]
(26)

In the middle of the quadratic form (25) there is the matrix
W: that matrix has a sparse form, therefore one needs to
compute only the last column of (2M +2λW)−1. Using the
matrix inversion lemma, one obtains that (2M + 2λW)−1 =[

A B
BT (D + 2λI)

]−1

=
[
∗ −A−1BQ−1

∗ Q−1

]
(27)

where Q =
(
D − BTA−1B + 2λI

)
, (S + 2λI). The con-

straint (21) now appears as

gT

[
A−1BQ−1Q−TBTA−T −A−1BQ−1Q−T

(symm) Q−1Q−T

]
g = 1

(28)
Now write Q in this way:

Q = (S + 2λI)−1 =
SA + 2λI

p(λ)
(29)

where SA = det(S) · S−1 and p(λ) = det (S + 2λI). Since
Q−1Q−T =(

SA + 2λI
)(

SA + 2λI
)T

p(λ)2
=

SASAT

+ 4λ2I + 4λSA

p(λ)2
(30)

One finally obtains the following polynomials:

λ2 · 4gT

[
A−1BBTA−T −A−1B

(symm) I

]
g + (31)

λ · 4gT

[
A−1BSABTA−T −A−1BSA

(symm) SA

]
g +

gT

[
A−1BSAT

SABTA−T −A−1BSAT

SA

(symm) SAT

SA

]
g = [p(λ)]2

Because p(λ) is a second-order polynomial, the order of (31)
is 4, therefore the solution can be found in closed form. After
one has found λ, one can obtain x using (24).

APPENDIX II
FAST CORRESPONDENCE SEARCH

Much of the speed of PLICP comes from a smart im-
plementation of the correspondence-search procedure. This
appendix describes it in detail, because it is not specific to
PLICP, but can be re-utilized in other ICP-like algorithms as
well. As a notable exception, it cannot be utilized in MBICP,
because that algorithm uses a different metric for establishing
the point correspondences.

Once again, the goal of the correspondence-search algo-
rithm is, for each point pw

i in the scan yt to find its closest
point pj in the scan yt−1 (recall that the points pw

i are the
points of yt expressed in yt−1’s frame). Call ji

1 the index
of such point:

ji
1 = arg min

j

∥∥pj − pw
i

∥∥2
(32)

The naive algorithm for solving this problem is consid-
ering all possible points in sequence. One optimization is
possible if the points in yt−1 have a radial ordering. In that
case, the search can be restricted to only the points in the
ϕ interval (∠pw

i −∆ϕ, ∠pw
i + ∆ϕ); if max |t| and max |θ|

are known a priori, an upper bound for ∆ϕ is

|∆ϕ| ≤ tan−1 max |t|
||pw

i ||
+ max |θ| (33)

A. Many little tricks make a smart algorithm

The smart algorithm is the union of several heuristics. The
only assumption needed is that of the radial ordering for
the points in yt−1. There are no magic numbers for this
algorithm; one does not need to know max |t| and max |θ|.
The source code is shown in Fig. 5 — well, a reasonably
simplified version: see file icp/icp_corr_tricks.c in the software
package for the actual source code.

(line 11 in Fig. 5) The search for point i starts from
point ji−1

1 , that is the correspondence found for the previous
point pw

i−1. This helps because, being point pw
i and pw

i−1

close, also their corresponding points will be close to each
other.

(Fig. 4(b); line 22 in Fig. 5) The search proceeds in
two directions: for increasing and decreasing values of ϕ,
indicated, respectively, with the indices up and down. The
search alternates between the two, always choosing the
direction which looks more promising, by comparing the

distance to pw
i in the up direction (last_dist_up) and in the down

direction (last_dist_down).
(Fig. 4(c); line 34–39 in Fig. 5) This is an early-stopping

criterion. Consider the search in the up direction, when ϕup >
∠pw

i , that is, the index is “getting away” from pw
i . In this

case (line 35), one can compute min_dist_up, the minimum
distance to pw

i for the points pj , with j > up. If min_dist_up
is bigger than the current best_dist, then the search can be
stopped in the up direction (line 38).

The distance min_dist_up can be computed by geometric
inspection of Fig. 4(c). For j > up, one has that δϕ ≥
ϕup −∠pw

i , and therefore ||pj − pw
i || ≥ sin(δϕ)||pw

i ||. One
does not need to compute the exact sine of the angle; any
approximation f(x) will do, as long as it is ‘optimistic‘
(f(x) ≤ sin(x)).

(Fig. 4(d); line 41–44 in Fig. 5) Finally, the following
optimization allows to jump over “uninteresting” points.

For this to work, one need to precompute some “jump
tables” for the scan yt−1 (only once, they can be re-used
over ICP iterations); these tables, in practice, are very cheap
to compute (less than 1% of the execution time).

For each point j in yt−1, compute up_smaller[j] (up_bigger[j])
as the first point with index j′ > j for which the reading ρj′

is smaller (bigger) than ρj :

up_smaller[j] = min { j′ > j | ρj′ < ρj }
up_bigger[j] = min { j′ > j | ρj′ > ρj }

Consider again the search in the up direction, when ϕup >
∠pw

i . If the current point pup is farther than the best point
so far pbest, and ρup ≥ ||pw

i ||, then one can conclude that
no point pj , with j > up and ρj ≥ ρup can do better, and
then the search can directly jump to the point up_smaller[up],
the first point with ρ < ρup. This allows to ignore the points
between up and up_smaller[up]. In the case of ρup ≤ ||pw

i ||,
the search jumps to up_bigger[up].

All this procedure is repeated, mutatis mutandis, for the
search in direction down (line 50).

B. Qualitative and quantitative comparison

A measure of the efficiency of the algorithm is the number
of times it needs to compute the distance between two points.
The test is performed on the same data log used for the other
experiments. For the naive algorithm, the parameters used
are max |t| = 0.5m e max |θ| = 25◦, which are the actual
maximum translation and rotation found in the log (they are
the ‘optimal’ parameters).

number of comparisons smart naive
total number ∼ 12 · 106 ∼ 262 · 106

avg. per ray per iteration 6.0 124.9
iterations per second 539 93

One can see that there is a dramatic reduction of the
number of comparisons: on average, the smart algorithm does
only 6 comparisons per ray per iteration, and this leads to a
considerable overall speed-up.

|∆ϕ|
∠p

w

i

(a) Naive algorithm

down

jump

bestup

stopstop

last_best

(b) Smart algorithm

stop

up

best

min_dist_up

p
w

i

(c) Early stopping

up
best_dist

best

up_smaller[up]

p
w

i

(d) Using jump tables

Fig. 4. Fig. 4(a) shows the naive algorithm that serially visits the points in yt−1; a bound for max |∆ϕ| can be found by equation (33). The smart
algorithm does not visit the points serially. To find ji

1, it starts at point ji−1
1 (last_best in the source code), and searches in both directions at the same

time (indices up and down): at each step, it chooses the direction which looks more promising. Then, there are various heuristics for early stopping
(Fig. 4(c)), and for ignoring some of the points (Fig. 4(d)).

1 // Out of the main loop, we remember the last match found.
2 int last_best = invalid;
3

4 for(each point pw
i in scan yt) {

5

6 // Current best match, and its distance
7 int best = invalid; double best_dist = ∞;
8 // Approximated index in scan yt−1 corresponding to point pw

i
9 int start_index = (∠pw

i − ϕ0) · (nrays/2π);
10 // If last match was succesful, then start at that index + 1
11 int we_start_at = (last_best != invalid) ? (last_best + 1) : start_index;
12 // Search is conducted in two directions: up and down
13 int up = we_start_at+1, down = we_start_at;
14 // Distance of last point examined in the up (down) direction.
15 double last_dist_up = ∞, last_dist_down = ∞;
16 // True if search is finished in the up (down) direction.
17 bool up_stopped = false, down_stopped = false;
18

19 // Until the search is stopped in both directions...
20 while (! (up_stopped && down_stopped)) {
21 // Should we try to explore up or down?
22 bool now_up = !up_stopped & (last_dist_up < last_dist_down);
23 // Now two symmetric chunks of code, the now_up and the !now_up
24 if(now_up) {
25 // If we have finished the points to search, we stop.
26 if(up >= nrays) { up_stopped = true; continue; }
27 // This is the distance from pw

i to the up point.
28 last_dist_up = ||pw

i − pup||2;
29 // If it is less than the best point, up is our best guess so far.
30 if(correspondence is acceptable && last_dist_up < best_dist)
31 best = up, best_dist = last_dist_up;

32 if (up > start_index) {
33 // If we are moving away from start_cell we can compute a

bound for early stopping. Currently our best point has distance
best_dist; we can compute the minimum distance to pw

i for
points j > up (see figure 4(c)).

34 double ∆ϕ = ϕup − ∠pw
i ;

35 double min_dist_up = sin(∆ϕ) ||pw
i ||;

36 if([min_dist_up]2 > best_dist) {
37 // If going up we can’t make better than best_dist,

then we stop searching in the "up" direction
38 up_stopped = true; continue;
39 }
40 // If we are moving away, then we can implement the jump tables

optimization.
41 up = // Next point to examine is...
42 (ρup < ||pw

i ||) ? // is pw
i longer?

43 up_bigger[up] // then jump to a further point
44 : up_smaller[up]; // else, to a closer one.
45 } else
46 // If we are moving towards "start_cell", we can’t do any ot the

previous optimizations and we just move to the next point.
47 up++;
48 } // if(now_up)
49 // This is the specular part of the previous chunk of code.
50 if(!now_up) { ... }
51 }
52 // Set null correspondence if no point matched.
53 ...
54 // For the next point, we will start at best
55 last_best = best;
56 }

Fig. 5. Pseudo-C source code for the smart algorithm. This is basically a prettied-up version of the code in file icp/icp_corr_tricks.c.

REFERENCES

[1] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algo-
rithm,” in Third International Conference on 3D Digital Imaging and
Modeling (3DIM), June 2001.

[2] F. Lu and E. Milios, “Robot pose estimation in unknown environments
by matching 2D range scans,” Journal of Intelligent Robotics Systems,
vol. 18, no. 3, pp. 249–275, 1997.

[3] S. Pfister, K. Kriechbaum, S. Roumeliotis, and J. Burdick, “Weighted
range sensor matching algorithms for mobile robot displacement
estimation,” in Proceedings of the IEEE International conference on
Robotics and Automation (ICRA), 2002.

[4] B. Jensen and R. Siegwart, “Scan alignment with probabilistic distance
metric,” in Proceedings of the IEEE/RSJ International conference on
Intelligent Robots and Systems (IROS), (Sendai, Japan), 2004.

[5] L. Montesano, J. Minguez, and L. Montano, “Probabilistic scan
matching for motion estimation in unstructured environments,” in
Proceedings of the IEEE/RSJ International conference on Intelligent
Robots and Systems (IROS), (Edmonton, Canada), 2005.

[6] J. Minguez, F. Lamiraux, and L. Montesano, “Metric-based scan
matching algorithms for mobile robot displacement estimation,” IEEE
Transactions on Robotics, 2006.

[7] Y. Chen and G. Medioni, “Object modeling by registration of multiple
range images,” in Proceedings of the IEEE International conference on
Robotics and Automation (ICRA), (Sacramento, CA, USA), pp. 2724–
2729, Apr. 1991.

[8] P. Besl and N. McKay, “A method for registration of 3-D shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239–256, 1992.

[9] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, “The trimmed
iterative closest point algorithm,” in Proceedings of the International
Conference on Pattern Recognition (ICPR), (Quebec, Canada), 2002.

[10] H. Pottmann, Q.-X. Huang, Y.-L. Yang, and S.-M. Hu, “Geometry
and convergence analysis of algorithms for registration of 3d shapes,”
Intternation Journal of Computer Vision, vol. 67(3), no. 3, pp. 277–
296, 2006.

[11] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage
project: Tools for multi-robot and distributed sensor systems,” in In
Proc. of the Int. Conf. on Advanced Robotics (ICAR 2003), (Coimbra,
Portugal), pp. pp. 317–323, June 30 - July 3 2003.

[12] A. Censi, “Scan matching in a probabilistic framework,” in Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA), (Orlando, Florida), pp. 2291–2296, 2006.
Available from: http://purl.org/censi/2006/gpm.

